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7-Aminobutyric acid (GABA) (1) is a nonprotogenic amino 
acid which functions as an important inhibitory neurotransmitter 
in the mammalian brain.1 This simple substance mediates more 
than 40% of all inhibitory synaptic activity, and several GABA 
analogues have been implicated as important therapeutics in the 
treatment of neurological and psychiatric disorders.2 We describe 
our preliminary results concerning a facile route to the preparation 
of GABA analogues 2 and 2,2-disubstituted pyrrolidines 3, both 
containing an asymmetric quaternary carbon center. Furthermore, 
a study to assess the key allylation reaction provided means for 
either enhancement or complete reversal of the diastereoselection 
through variation of the chiral auxiliary. 
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Scheme I portrays the synthetic approach originating from the 
readily prepared chiral bicyclic lactams 4,3 which were exposed 
to allyltrimethylsilane and titanium(IV) tetrachloride, furnishing 
allylated pyrrolidinones 5 in excellent yields. The diastereoselection 
in 5 ranged from 5:1 for the angular methyl bicyclic lactam (4, 
R = Me) to 2:1 for the angular isopropyl bicyclic lactam (4, R 
= /-Pr).4 However, the excellent yield of the reaction allowed 
isolation (radial chromatography with mixtures of ethyl ace-
tate/hexanes) of the major diastereomers, 5a-c, in good yields 
(60-80%). Moreover, changes in the chiral amino alcohol led to 
drastic changes in stereoselectivity (vide infra). The absolute 
stereochemistry of 5b, the major diastereomer,5 was determined 
by an X-ray crystallographic study.6 

Reductive cleavage of the phenylglycinol moiety in 5, under 
dissolving metal conditions, provided the versatile pyrrolidinones 
6a-c in good yield and allowed access to both the GABA analogues 
and 2,2-disubstituted pyrrolidines. Thus, acylation of 6a-c with 
the carbobenzyloxy group followed by methanolysis furnished the 
acyclic N-protected 7-amino esters 7a-c, whereas hydride re­
duction of 6 gave the pyrrolidines 8a-c. Yields for both series 
were quite satisfactory.7 
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Further synthetic utility of the enantiomerically pure allyl-
substituted pyrrolidinone 6a was demonstrated by conversion to 
the azabicyclo[3.3.0]octane 9 via exposure to selenium-mediated 
cyclization conditions.8 This bicyclic system contains the skeletal 
array of the important pyrrolizidine alkaloids. 

The stereochemistry observed for the disubstituted lactam 5 
was in contrast to our earlier reports on the cleavage of these acetal 
centers. Previously, allylation of the angular hydrogen lactam 
(4, R = H) gave the product with inversion at the angular position 
(10). These results were consistent with previous studies9 on the 

H* HO J^\ 

Ph O 

1 0 

cleavage of acetals under Lewis acid conditions wherein the ring 
oxygen bond is partially broken due to complexation, thus allowing 
an SN2-like delivery of the nucleophile from the a-face. In the 
present study the allyl group entered the congested /?-face, fur­
nishing the product with retained configuration (4 to 5, Scheme 
I)-

In an effort to understand this anomalous stereochemical 
outcome, the steric bulk of the auxiliary was varied (Table I). 
Thus, replacing the phenylglycinol auxiliary in 4 with that derived 
from alanine (11, R = Me), valine (11, R = i-Pr), or tert-leucine 
(11, R = f-Bu) gave widely varying ratios of the 5-allyl-
pyrrolidinones 12a (retention) and 12b (inversion).10 The se­
lectivity observed for allylation ranged from 8:1 for methyl to a 
complete reversal of 1:11 for the terf-butyl group, results which 
significantly improve the synthetic value. A mechanistic picture 
emerges that involves a combination of the Felkin-Ahn model 
for nucleophilic addition, allylic 1,3-strain, and chelation effects. 

If one considers the initially formed 7V-acyliminium ion A 
(Scheme II, looking down the C-N bond), in which R is the alkyl 
group derived from the various amino alcohol auxiliaries, then 
according to allylic 1,3-strain,11 a 120° rotation to B or a 180° 
rotation to C should minimize this strain by directing the small 
hydrogen atom toward the congested olefinic center. From the 
model of Felkin and Ahn,12 when R is a large group (i.e., fert-butyl 
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and isopropyl), entry by silane occurs from the face opposite this 
large group (C) to generate the product (a-entry) of inversion 
(12b). Alternatively, when R is the smaller group (methyl or 
phenyl), the alkoxytitanium assumes the role of the large group 
and occupies the antiperiplanar position (B), thus directing the 
entry from the /S-face to provide 12a. The acyliminium ion derived 
from the phenylglycinol moiety may also involve several ster-
eoelectronic factors.13 Finally, and perhaps of equal significance, 
there exists the possibility of a seven-membered-ring chelate in 
B and C derived from the alkoxytitanium and the carbonyl oxygen. 

The present study provides a remarkable example of how the 
stereochemistry of Lewis acid-allylsilane alkylations may be 
altered (inversion or retention at the electrophilic carbon) by simply 
changing the nature of the auxiliary group from small (methyl) 
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(13) Polniaszek, R. P.; Belmont, S. E.; Alvarez, R. J. Org. Chem. 1990, 
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to large (tert-butyl), rather than altering the stereocenter. Ad­
ditionally, the stereoselectivity leading to 12a or 12b is found to 
increase significantly (5:1 versus 8:1 in phenyl to methyl and 1:2 
versus 1:11 in isopropyl to fert-butyl), suggesting a protocol to 
reach maximum selectivity. Further studies are in progress to 
fully evaluate the potential of this system. 
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Marine dinoflagellates are attracting much attention as a rich 
source of bioactive compounds, e.g. brevetoxins, ciguatoxins, 
maitotoxin, and okadaic acid.1 While screening dinoflagellate 
cultures for bioactive compounds, we discovered a potent anti­
fungal agent, amphidinol (1) in cultures of the dinoflagellate 
Amphidinium klebsii. In this communication we report the 
structural elucidation of amphidinol, which is the first member 

(1) (a) Lin, Y.-Y.; Risk, M.; Ray, S. M.; Engen, D. V.; Clardy, J.; Golik, 
J.; James, J. C; Nakanishi, K. J. Am. Chem. Soc. 1981,103, 6773-6775. (b) 
Murata, M.; Legrand, A. M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. 
Chem. Soc. 1990, 112, 4381-4386. (c) Murakami, Y.; Oshima, Y.; Yasu­
moto, T. Bull. Jpn. Soc. Sci. Fish. 1982, 48, 69-72. 

0002-7863/91/1513-9859S02.50/0 © 1991 American Chemical Society 


